Submanifolds of a Euclidean space with homothetic Gauss map
نویسندگان
چکیده
منابع مشابه
Reconstructing Submanifolds of Euclidean Space
A generalization of the crust algorithm is presented that will reconstruct a smooth d-dimensional submanifold of R. When the point sample meets satisfy a minimal density requirement this reconstruction is homeomorphic to the original submanifold. In fact the reconstructed manifold is ambiently isotopic to the original via an isotopy that moves points a small distance. Also, bounds are given com...
متن کاملLagrangian Submanifolds of Euclidean Space
We give an exposition of the result that there is no closed exact Lagrangian submanifold L of (C, ω0) where ω0 is the standard symplectic structure. We show that the assertion is equivalent to the statement that the perturbed Cauchy-Riemann equation ∂̄J0u = g for maps u from the unit disc D to C which map the boundary circle ∂D to L has no solution for some function g0. To do this, we follow [1]...
متن کاملSpherical Submanifolds of a Euclidean Space
A1 and A2 being arbitrary constants. A natural generalization of this question to higher dimensions could be: ‘given an isometric immersion ψ : Mn → Rn+2 of a compact n-dimensional Riemannian manifold (Mn, g), obtain conditions for ψ(Mn) ⊂ Sn+1(c), where Sn+1(c) is the sphere of constant curvature c’. We write ψT , ψ⊥ as tangential and normal components of the position vector ψ in Rn+p and show...
متن کاملFirst Eigenvalue of Submanifolds in Euclidean Space
We give some estimates of the first eigenvalue of the Laplacian for compact and non-compact submanifold immersed in the Euclidean space by using the square length of the second fundamental form of the submanifold merely. Then some spherical theorems and a nonimmersibility theorem of Chern and Kuiper type can be obtained.
متن کاملAlmost Extrinsically Homogeneous Submanifolds of Euclidean Space
Consider a closed manifold M immersed in Rm. Suppose that the trivial bundle M × Rm = TM ⊗ νM is equipped with an almost metric connection ∇̃ which almost preserves the decomposition of M × Rm into the tangent and the normal bundle. Assume moreover that the difference Γ = ∂ − ∇̃ with the usual derivative ∂ in Rm is almost ∇̃-parallel. Then M admits an extrinsically homogeneous immersion into Rm.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Mathematical Society of Japan
سال: 1980
ISSN: 0025-5645
DOI: 10.2969/jmsj/03230531